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Abstract. The particle spectrum of a spontaneously broken supersymmetric gauge theory 
may in principle contain massive vector bosons without the scalars required for complete 
vector supermultiplets (supersymmetry ‘shattering’ or breaking ‘in spins’). It is conjectured, 
however, that this truncation of the spectrum is incompatible with gauge anomaly freedom, 
and thus cannot occur in a unitary quantum field theory. A supersymmetric Higgs model 
is presented illustrating clearly the role of anomalies in ensuring an untruncated spectrum 
of supersymmetry multiplets modulo mass splittings, and providing strong evidence in 
favour of the conjecture. 

1. Introduction 

In this paper we investigate the particle spectrum in a spontaneously broken supersym- 
metric gauge theory. In particular, we conjecture that the conditions for anomaly 
freedom are sufficient to preclude the unusual pattern of supersymmetry and gauge 
breaking found in [l] ,  where the massive vector bosons arising from the Higgs 
mechanism are not accompanied by the scalars which would be required to form 
complete massive vector supermultiplets. 

In a supersymmetric theory, the Goldstone bosons of a spontaneously broken 
internal symmetry lie in massless chiral multiplets. It is possible for both the scalars 
in a chiral multiplet to be themselves Goldstone bosons-they are then said to be 
‘non-doubled’. If only one of the scalars is a Goldstone boson, it is ‘doubled’. The 
simplest form of the supersymmetric Higgs mechanism occurs when a massless gauge 
vector multiplet (2, + 2F degrees of freedom) couples to a doubled Goldstone multiplet 
(2B + 2F). The Goldstone boson combines with the massless vector to produce a massive 
vector boson (3B), leaving a massive scalar ( lB) ,  while the two Weyl fermions combine 
into a massive Dirac fermion (4F). This is the content of a massive vector supermultiplet. 
However, if the Goldstone multiplet is non-doubled, then two massless gauge vector 
multiplets can couple to it. After the Higgs mechanism, the spectrum in this case 
comprises two massive vector bosons (2 x 3B), no scalars, a massive Dirac fermion (4F) 
and a massless Weyl fermion (2F). This spectrum does not have the required number 
of degrees of freedom to form complete massive vector supermultiplets-the spectrum 
is truncated. This form of spontaneous supersymmetry breaking has been called 
breaking ‘in spins’ [2], or, more evocatively, supersymmetry ‘shattering’ [ I ]  (see also 
the review [3]). 

An explicit model, with gauge group SU(2)xU(1) ,  breaking to U( l )em,  which 
displays this effect was presented in [l]. However, this model contained just one SU(2) 
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doublet chiral superfield and so was anomalous. As shown in [4], removing the 
anomalies by adding a second doublet with opposite hypercharge leads to doubled 
Goldstone multiplets and a conventional non-truncated spectrum. Several other 
models, also in the context of dynamical gauge symmetry breaking [5], share this 
property. 

This leads us to make the following conjecture? (see also [ 6 ] )  that in an anomaly-free 
theory, supersymmetry ‘shattering’ is not possible. This intimate relation between gauge 
anomalies and supersymmetry breaking ‘in spins’ is an intriguing and possibly deep 
result. It is of course purely quantum mechanical-at the semiclassical level there is 
no incompatibility. 

The purpose of this paper is to sharpen the evidence for this conjecture, and to 
investigate whether it is feasible to promote it to a no-go theorem. We first formulate 
a set of necessary conditions for breaking to a truncated spectrum to occur, then 
construct a model in which as many as possible of these conditions are realised. Despite 
this, the model-a chiral gauge theory with gauge group SU(5) x U( 1)-still fails to 
produce a truncated spectrum. It shows very clearly the role of gauge anomaly freedom, 
and in our view provides very strong evidence that supersymmetry shattering is 
impossible to achieve. 

2. Necessary conditions for supersymmetry shattering 

The general formalism describing the supersymmetric Higgs mechanism in weak 
coupling gauge theories is given in [I ,  41, and so here we shall simply quote results as 
needed. Two general theorems from [ l ]  are worth recalling. 

(i) It is not possible for all Goldstone multiplets to be non-doubled. There must 
exist at least one doubled multiplet. 

(ii) If gauge fields are coupled to both the scalars in a non-doubled Goldstone 
multiplet, then supersymmetry is spontaneously broken by the D-type mechanism. 
For this to occur it is necessary for the gauge group to have a U ( l )  factor with a 
Fayet-Iliopoulos term [8]. We therefore consider models with gauge group G, = 
GxU(1) .  

We now formulate a set of necessary conditions for the occurrence of supersymmetry 
shattering in a unitary quantum field theory. If this is indeed impossible, we might 
hope to formulate a no-go theorem by showing the inconsistency of these conditions 
(or, even better, of a subset of them). We shall see later to what extent this hope is 
borne out. 

For simplicity, we consider models with no superpotential (in the light of the results 
from the model in 0 3 it seems unlikely that this would help). The effective potential 
is then 

V = +( DA)2 (1) 

t The difficulties of obtaining supersymmetry shattering in an anomaly-free model have been noted indepen- 
dently by W Lerche (private communication). Related work on symmetry breaking patterns in supersym- 
metric theories may be found in [ 7 ] .  
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where TI),)(P(~) = QY(r )qqr ) ,  and T c )  are the generators of G in the representation ( I ) .  

The U(l )  generator is denoted by the index 0 and S is the Fayet-Iliopoulos coefficient. 
We have used the equations of motion for the gauge auxiliary fields DA in writing (1). 

The vacuum expectation values must be such that the potential is extremised, i.e. 
a V/a(pl(,, = 0. This implies 

gA(DA)Tc)(cp(d = 0. (4) 

In the case where supersymmetry is spontaneously broken, ( (DA) # 0), (4) states that 
the generator (DA)TA remains unbroken. Moreover, it may be shown to commute 
with all other conserved generators and thus generate an unbroken U( 1) .  

Further, the potential must be minimised. This means that the (squared) mass 
matrix of the bosons must not contain any negative eigenvalues. The expression for 
the mass matrix may be found in [4]. Unfortunately, this condition is rather complicated 
to incorporate as a necessary ingredient of a possible no-go theorem. 

A necessary condition for obtaining a truncated spectrum is that some gauge fields 
couple to non-doubled Goldstone bosons. The criterion for non-doubling [ 1,9] is that 
there exists a complex linear combination cATA of generators which is broken, but for 
which the complex combination c2TA is unbroken, i.e. 

c A T c ) ( P ( r ) )  # 0 

c2  T c ) ( q ( r ) )  = 0 

for some representation ( r )  

for all representations ( r ) .  
( 5 )  

Finally, we impose the anomaly freedom conditions, which we believe to preclude 
supersymmetry shattering even when condition (5) is fulfilled: 

c A ( r ) = O  
( r )  

C where the 'anomaly' A ( r )  of the representation ( r )  is defined by Tr Tc){  TE,, T,,)} = 
A ( r )  dABC (A ,  B, C # 0) ,  

c I ( r ) Q , ( r )  = o  ( 6 b )  
( r )  

where the index I (  r )  of the representation ( r )  is defined by Tr{ Tt), T;)} = I (  r )SAB,  and 

c D(r)Q,W3=O ( 6 c )  
( I )  

where D ( r )  is the dimension of ( r ) .  

3. The SU(5) x U(l) model 

We now present a model which is constructed so as to have the best possible chance 
of realising supersymmetry shattering. The model is a chiral gauge theory, since a 
chirally asymmetric field content clearly enhances the possibility of obtaining non- 
doubled Goldstone bosons after spontaneous symmetry breaking. It also has the 
property that, in the absence of the Fayet-Iliopoulos term, the only minimum is at 
(cp(,,) = 0. For 6 # 0, this excludes the possibility of having a supersymmetric vacuum 
with all (DA) = 0. 
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We consider? a gauge group SU(5) x U( l)y and ensure the absence of anomalies 
by choosing a field content corresponding to the reduction of the 16 of SO(10) with 
respect to SU(5) x U( l)y$§ 

5 3 1 1 s, 
M "  10 -1 -1 3 
P 1 -5 0 0 

- 

It is easily shown that the most general form of the vacuum expectation values is, up 
to an SU(5) x U( l )y  transformation, 

The corresponding vacuum expectation values of the D A  fields are then computed 
using (2) and (3). The a priori non-vanishing ( D A )  correspond to the diagonal 
generators To,  T' = diag(-1, 1,0,0,0),  T 2  = (1/J3)  diag(-1, -1,2,0,0),  T 3  = (1/J6)  
diag(-1, -1, -1,3,0), T4= (l/JlO) diag(-1, -1, -1, -1,4) and to the non-diagonal 
generators ( T k l ) y  = Ski6, + SliSkj for ( k ,  I )  = (1,3), (2 ,4)  and (3,5).  The vacuum energy 
is then 

(V) = g'2( U?+ U:+ U;+ U: -3v2+ w2+25/g')2 

+ (g2/ 1 0 ) ( - 2 U :  -2u: - 2u:+ 3U:-4v2)2 

+ (g2/6)(-2u: - 2 ~ :  + 2 ~ : + 3 ~ : ) ~  

+ g 2 U i +  (g2/3)(-2u?+ u : + ~ u ; ) ~  

+4g2(u:U:+ u:u:+ u:u:, .  

The extremum of the potential with highest symmetry corresponds to v # 0, ui = w = 0, 
and the unbroken gauge group is SU(4) x U( 1) (we take 5 >  0). The decomposition 

t Without the U(1), gauging and the chiral superfield P, this model is the one-flavour version of that 
considered in [ lo]  to illustrate supersymmetry breaking by instantons. Here, however, we gauge U(1), and 
add a Fayet-Iliopoulos term, so that the fields acquire non-trivial VEV at the tree level and the model may 
be described as a weak coupling theory with spontaneously broken gauge symmetry (of course, since there 
are scalars in the fundamental representation of SU(5) ,  complementarity implies there is an equivalent 
description in terms of unbroken gauge symmetry). Instanton effects are therefore negligible in determining 
the spectrum. 
$ This choice of fields also ensures that the trace of the U(1), charge vanishes, which in turn implies the 
vanishing of the Abelian gravitational anomaly [ 111. The vanishing of the U(  l),  trace is also necessary for 
the D term not to be renormalised [ 121. 
B In fact, the model has three classical U(1) symmetries [lo]: U(l),, which is anomaly free and commutes 
with supersymmetry; U ( l ) R ,  which is anomaly free but does not commute with supersymmetry; and U(1), 
which commutes with supersymmetry but is not anomaly free. Thus only U(l), is suitable for gauging. 
Both U(1), and U(1), are spontaneously broken here in the preferred vacuum. 
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of the representations is as follows: 
s u ( 5 ) x u ( 1 ) + s u ( 4 ) x u ( 1 )  

5(3)+4(3)+ l (0)  
- 
lo(-1) + 6(-2) + Z (  1) 

1(-5)+ 1(-4). 

If the B representation is not included in the model, this would be a minimum of the 
potential and an example of a model with non-doubling and a truncated spectrum. 
There are four non-doubled Goldstone multiplets and one doubled, and, as explained 
in the introduction, massive vector bosons arise without the necessary additional states 
required for complete massive vector supermultiplets. However, it can be shown that, 
for the irreducible representations of SU(5) x U( 1) whose vacuum expectation value 
vanishes, the squared mass after symmetry breaking is proportional to the opposite of 
the unbroken U( 1) charge. Thus the 3 coming from the decomposition of the would 
have a negative squared mass and this extremum is not a minimum. The symmetry 
has to break further. 

It can in fact be shown that there is a minimum with U # 0, u4 # 0, all other u1 = 0, 
and w = 0 (this means that the 4 of SU(4) has acquired a vacuum expectation value). 
The unbroken gauge group is SU(3) x U( l ) ,  and the decomposition of the representation 
is as follows: 

SU(5) x U( 1) + SU(3) x U( 1) 

5(3)+3(2)+ 1(3)+1(0) 
- 
lo(-1) + 3(-1) +3(-2) +3(1) + l (0)  

1(-5)+ 1(-3). 

Notice that the spectrum obtained is chirally symmetric with respect to the unbroken 
subgroup. To achieve this breaking, sixteen Goldstone bosons are needed. These are 
eaten in the Higgs mechanism to produce the massive vector bosons. We have sixteen 
chiral multiplets in the triplet and singlet representations specified. However, not all 
of these contain Goldstone bosons. In fact, we still have non-doubling. 

The sixteen broken generators decompose under SU(3) x U ( l )  into [3(-1)+3( 1)]+ 
[3(2)+3(-2)]+[1(3)+1(-3)]+1(0)+1(0). It is easy to check that the following com- 
plex linear combinations of SU( 5 )  generators satisfy the non-doubling criterion (6), 
viz cAT; = 6,,6, for k = 1 , 2 , 3  and  CAT^ = 64,S5,. These generators cAT; are broken 
whereas LZT; are not. They correspond to the SU(3) x U ( l )  representation 3(1) + l(3).  
As a consequence, the Goldstone multiplets split into four non-doubled multiplets, 
namely 3(1)+ 1(3), and eight doubled multiplets, namely 3(2) +3(-2) + 1(0)+ l(0).  

Remarkably therefore, in this model, all the conditions of § 2 are satisfied. The 
mechanism [ 11 described in the introduction where two massless vector multiplets 
combine with just one chiral Goldstone multiplet takes place. However, there are 
additional chiral multiplets not containing Goldstone bosons with exactly the right 
quantum numbers to complete massive vector supermultiplets. These are the 3( -1) 
coming from the and the 1(-3) coming from the singlet. These spectator fields, 
which take no part in the Higgs mechanism, provide the extra degrees of freedom 
needed to produce a non-truncated spectrum?. The presence of these spectators is 

f Notice that these spectator fields will automatically be present if the spectrum of chiral superfields is a 
self-adjoint representation of the unbroken subgroup 
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required by the anomaly freedom conditions. All the sixteen original fields S, M and 
P are therefore used up, so the final spectrum of the model comprises simply the 
massless gauge vector multiplets of SU(3) x U ( l )  and, modulo mass splittings, the 
sixteen massive gauge vector multiplets of SU(5) x U( 1)/SU(3) x U( 1). 

Notice, however, that in the above discussion we have only considered the quantum 
numbers of the particles in the physical spectrum. It remains to be shown whether 
the supersymmetry transformations can indeed be modified so as to relate the states 
in the incomplete massive vector multiplets and those in the spectator chiral multiplets. 

4. Conclusion and discussion 

In the particular model presented, we have shown that anomaly freedom forces the 
introduction of spectator chiral multiplets with precisely the right quantum numbers 
needed for complete vector multiplets in what would otherwise be a truncated spectrum. 
We have not proved a direct connection between the absence of anomalies and the 
impossibility of obtaining a truncated spectrum. However, the evidence from this and 
many other models points strongly in favour of the conjecture that supersymmetry 
shattering does not occur in an anomaly-free model. It appears that unitarity of the 
quantum field theory is incompatible with supersymmetry breaking ‘in spins’. 

Finally, we have only discussed here the possibility of obtaining supersymmetry 
shattering in Higgs models. In fact, the effect was suggested [2, 131 on the basis of 
counting degrees of freedom in gauged supersymmetric non-linear sigma models where 
the (complex) scalar fields span a homogeneous Kahler manifold G/H.  Interestingly, 
such models have since been shown to possess isometry anomalies [14], and are 
therefore inconsistent when gauged. The anomaly-free sigma models which actually 
arise as low-energy effective Lagrangians from a fundamental supersymmetric theory 
with spontaneous chiral symmetry breaking have as target manifold the deformation 
of a complex coset space G/k  where the metric possesses only G isometries (G being 
the compact global symmetry group of the fundamental theory and G its com- 
plexification) [ 15, 161. In such models, the chiral symmetry breaking pattern G-, H 
depends on the embedding of the complex isotropy group in G. This vacuum 
alignment problem is resolved when a subgroup of G is gauged [7]. The symmetry 
breaking G +  H is therefore dependent on the weak gauge field dynamics. It seems 
likely, therefore, that in sigma models, just as in Higgs models, anomaly freedom 
precludes supersymmetry breaking ‘in spins’. 
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